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Some Characterizations of the Underlying Division
Ring of a Hilbert Lattice by Automorphisms
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We give an ortholattice theoretical version, by means of an ortholattice
automorphism, of the theorem of M. P. SoleÁ r characterizing Hilbert spaces by
orthomodular spaces. Given an orthomodular space * and an orthoclosed
subspace X of *, we study the group of all unitary operators on * whose
restrictions to X and to X ’ are both identical maps. This enables us to obtain
complete characterizations of the underlying division ring of a Hilbert lattice,
for each classical case where this division ring is R, C, or H (the skew field of
quaternions), by means of one or several ortholattice automorphisms.

1. ORTHOMODULAR SPACES AND HILBERT LATTICES

The results given in this and the next section are well known and most

of them can be found in Piron (1976), Varadarajan (1984), Keller (1980),

Gross and KuÈ nzi (1985) and SoleÁ r (1995).

Let us consider a division ring K equipped with an involutive antiauto-
morphism denoted by *, and let (*, , .,. . ) be an orthomodular space (also

called generalized Hilbert space) over K.
The ortholattice # (*) of all orthoclosed subspaces X of *, that is,

those subspaces X such that X 5 X ’ ’ , is a complete, atomic, irreducible

orthomodular lattice satisfying the covering law.

An ortholattice + isomorphic to such an ortholattice # (*) is called a
Hilbert lattice; in the particular case where * is a classical Hilbert space

over R, C, or H (resp. the field of real numbers, the field of complex numbers,

and the skew field of quaternions, endowed with their natural conjugation),

+ is called a classical Hilbert lattice.
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Any orthomodular lattice + of height at least 4 satisfying the four above

properties (complete, atomic, irreducible, satisfying the covering law) is a

Hilbert lattice.
It was shown by Keller (1980) and Gross and KuÈ nzi (1985) that there

exist many nonclassical Hilbert lattices.

SoleÁ r (1995) proved the following outstanding result:

An infinite-dimensional orthomodular space over K is a classical Hilbert

space if and only if it contains a g -orthogonal system, where g is a nonzero

element of K, that is a sequence (en)n e N of pairwise orthogonal vectors such
that, for any n e N, , en , en . 5 g .

In that paper, SoleÁ r gave an ortholattice theoretical version of her theorem

by means of an ª angle-bisecting system.º

Our aim is to give another ortholattice theoretical version of SoleÁ r ’ s

theorem by means of an ortholattice automorphism, and moreover, in a similar

way, to give complete characterizations of the underlying division ring for
each of the three classical cases where K 5 R, C, H.

2. SEMIUNITARY AND UNITARY MAPS

In what follows we will suppose that the inversion ring K, with involu-

tion, is fixed. We denote by *, *8 orthomodular spaces over K.

Definition 1. A semiunitary map s : * j *8 is a bijective map such that:

(a) For any x, y P *, s (x 1 y) 5 s (x) 1 s ( y).

(b) There exists an automorphism s 8 of K such that, for any l e K and

any x P *,

s ( l x) 5 s 8( l ) s (x)

(c) There exists l s e K such that, for any x, y e *,

^ s (x), s ( y) & 5 s 8( ^ x, y & ) l s

Some Properties

x s 8 and l s are unique and are determined by the restriction of s to

any nonzero subspace of *.

x The mapping f defined, for X P # (*), by

f (X ) 5 { s (x) | x P X }

is an ortholattice isomorphism from #(*) to #(*8), which is said to be
induced by s .

x By Wigner ’ s theorem, if * and *8 are of dimension at least 3, every

ortholattice isomorphism f from #(*) to #(*8) is induced by a semiuni-

tary map.
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x If * and *8 are of dimension at least 2, two semiunitary maps s 1,

s 2 from * onto *8 induce the same isomorphism f from #(*) to #(*8) if

and only if there exists a nonzero element g of K such that s 1 5 g s 2.
In particular, if * is of dimension at least 2, a semiunitary map s from

* to * induces the identity on #(*) if and only if s is of the form g id*,

where g is a nonzero element of K, and id* is the identical map on *.

x Any X P #(*) equipped with the restriction of the scalar product

, . , . . is an orthomodular space over K, and #(X ) is the interval [0, X ] of

#(*) endowed with its natural structure of ortholattice inherited from #(*).
Moreover, if s : * j *8 is a semiunitary map inducing f : #(*) j C (*8),
then the restriction s | x of s to X is a semiunitary map from X to Y 5 f (X )

which induces f | [0, X]: [0, X ] j [0, Y ].

Definition 2. A semiunitary map s :* j *8 is said to be unitary if

" x, y P *, ^ s (x), s ( y) & 5 ^ x, y &

or equivalently if s 8 5 idK and l s 5 1.

x It follows from the first property above that, if the restriction of a

semiunitary map s : * j *8 to a nonzero subspace X P #(*) is unitary,

then s is also unitary.

3. A NEW VERSION OF SOLEÁ R’S THEOREM

Let (*, , . , . . ) be an orthomodular space over K.

Lemma 1. Let us suppose that * is of dimension at least 3, and let X
P #(*), of dimension at least 2. If f is an ortholattice automorphism of

#(*) whose restriction to [0, X ] is the identical map, there exists a unique

unitary operator s on * inducing f such that the restriction of s to X is the

identical map.

The following result can easily be expressed in terms of ortholattice

theory, and then it provides a new ortholattice-theoretic version of SoleÁ r ’ s

Theorem.

Theorem 1. The following two statements are equivalent:

(1) There exist X, Y P # (*), where Y is of dimension at least 2, and

an ortholattice automorphism f of #(*), such that f (X ) is strictly contained

in X and the restriction of f to [0, Y ] is the identical map.
(2) * is an infinite-dimensional classical Hilbert space.

Moreover, if statement (2) holds, then, in order to prove that statement

(1) holds, subspaces X and Y can be chosen in a quite arbitrary way: we need

only have dim(Y ) $ 2, X ’ Y, and X, X ’ ù Y ’ both infinite-dimensional.



112 Mayet

Sketch of proof. (1) Þ (2) By Lemma 1, there exists a unitary map s :

* j * inducing f. If x0 is any nonzero element of f (X ) ’ ù X, then the

sequence ( s n(x0))n P N is a g -orthogonal system, where g 5 , x0, x0 . ; thus
we need only apply SoleÁ r ’ s Theorem.

(2) Þ (1). Let X, Y e #(*) satisfying the requirements of the last part

of Theorem 1, and let X1, Y1 P #(*) be separable infinite-dimensional

subspaces resp. of X and X ’ ù Y ’ .

There exists a Hilbert basis (en)n P Z (indexed by the set Z of all integers)

of X1 1 Y1 such that (en)n P N is a Hilbert basis of X1. There is an unique
unitary map s : * j * satisfying the following two conditions:

x s (en) 5 en+1 for any n P Z.

x The restriction of s to (X1 1 Y1)
’ is the identity.

Then the ortholattice automorphism f of #(*) induced by s satisfies

all the requirements of statement (1).

4. COMPLETE CHARACTERIZATIONS OF THE UNDERLYING
DIVISION RING

Let us denote by C (K ) the center of K. Let us define

U (K ) : 5 { g P K | g g * 5 1}

C1(K ) : 5 C (K ) ù U (K )

and, for any nonzero element x0 of *,

V (x0) : 5 { g P K | ^ g x0, g x0 & 5 ^ x0, x0 & }

: 5 { g P K | g ^ x0, x0 & g * 5 ^ x0, x0 & }

The sets C1(K ) and V (x0) are both multiplicative subgroups of K \ {0},

and in any classical case, they are isomorphic to one of the classical groups
O (1), SO(2), SU(2).

More precisely, for K 5 R, C, H:

x C1(K ) is isomorphic resp. to O (1), SO(2), O (1).

x V (x0) is isomorphic resp. to O (1), SO(2), SU(2).

Lemma 2. (a) If * is of dimension at least 2, a unitary map s :* j *
induces the identical map on # (*) if and only if it is of the form g id*,

where g P C1(K ). It follows that two unitary maps s 1, s 2:* j *8 induce

the same automorphism f : #(*) j # (*8) if and only if there exists g P
C1(K ) such that s 2 5 g s 1.
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(b) If * is one-dimensional, let x0 be a nonzero fixed vector in *. Then

a map s : * j * is unitary if and only if there exists g in V (x0) such that,

for any l P K, s ( l x0) 5 l g x0.

The statement (1) in the following theorem is connected with some results

of Mayet and PulmannovaÂ(1994) about nearly orthosymmetric ortholattices.

Theorem 2. Let X P #(*), and let G be the group of all ortholattice

automorphisms f of #(*) such that the restrictions of f to [0, X ] and to

[0, X ’ ] are both identical maps. Then:

(1) If X and X ’ are of dimension at least 2 (which implies that * is of

dimension at least 4), G is isomorphic to C1(K ).
(2) If X is one-dimensional and X ’ of dimension at least 2 (hence *

is of dimension at least 3), the group G is isomorphic to V (x0), where x0 is

any nonzero vector of X.

Sketch of Proof. (1) For any g P C1(K ), x P X, y P X ’ , we define

s g (x 1 y): 5 g x 1 y.
(2) For any g P V (x0), l P K, y P X ’ , we define s g ( l x0 1 y) : 5

l g *x0 1 y.
In both cases, by Lemmas 1 and 2, s g is a unitary operator on *, and

if we denote by f ( g ) the automorphism of #(*) induced by s g , then f is
a group isomorphism fro C1(K ) [resp. V (x0)] onto G.

Putting together Theorems 1 and 2, we obtain ortholattice-theoretic

characterizations of the underlying division ring of a Hilbert lattice by means

of automorphisms for each of the classical cases K 5 R, C, H.

Statement (1) in Theorem 2 allows us only to give such a characterization

for K 5 C [since C1(R) 5 C1(H ) 5 { 2 1, 1}]. If * is a classical Hilbert
space, then, applying statement (1), we obtain that * is a complex Hilbert

space if and only if there exists g P G such that g 2 Þ id*, and the next

result follows:

Theorem 3. If + is any Hilbert lattice, the following two statements

are equivalent:

(1) There exist pairwise orthogonal elements X, Y, Z of +, where X, Y
are of height at least 3, and an ortolattice automorphism f of + such that:

x The restrictions of f to X and Y are both identical maps.

x The restriction of f to [0, X Ú Y ] is not involutive.

x f (Z ) is strictly contained in Z.

(2) There exists an infinite-dimensional complex Hilbert space * such

that + is isomorphic to # (*).

In a similar way, Theorem 1 together with statement (2) in Theorem 2

enable us to give complete characterizations of the underlying division ring
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for each of the classical cases, since then the corresponding groups G are

pairwise nonisomorphic.

For instance, applying statement (2), we can express that the equation
s 4 5 Id* has respectively, two, four, or infinitely many solutions in G
according to whether K is R, C, or H. Another way is to express that K 5
R (resp. K 5 H ) is the only classical case where G is 2-element (resp.

noncommutative).
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